Quantifying uncertainty and stability among highly correlated predictors: a subspace perspective

Xiaozhu Zhang*, Jacob Bien[†], Armeen Taeb*

Department of Statistics, University of Washington*; Department of Data Sciences and Operations, University of Southern California†

Motivation

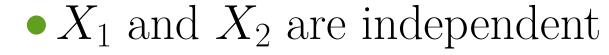
Toy example :

- X_1 and X_2 are independent, so are X_3 and X_4
- X_1 and X_3 are highly correlated, so are X_2 and X_4
- $y = \beta_1^* X_1 + \beta^* X_2 + \epsilon$

Challenges in this setting:

- How to quantify **false positive error** and false negative error?
- If $\widehat{S} = \{3, 4\}$, did I make two false discoveries? NO!
- How to measure **stability** of selected features and sets?
- In stability selection, no features are stable due to "vote splitting".
- How to aggregate stable features in to a model?
 Should: return both sets {1,2} and {3,4}.
- Should not: include redundant features, such as $\{1, 2, 3\}$.
- How to identify **substitutes** within stable models?
- X_1 and X_3 are substitutes; X_2 and X_4 are substitutes.

A more complex structure \$\cdot\$ than pairwise correlation:



•
$$X_3 = X_1 + X_2 + \delta;$$

 $y = X_1 - X_2 + \epsilon$

X_1 X_2 X_3

Subspace false positive/ negative error

Given two sets S and \widetilde{S} , we measure the similarity between the two **feature subspaces** $\operatorname{col}(X_S)$ and $\operatorname{col}(X_{\widetilde{S}})!$

- For the toy example \spadesuit , $\operatorname{col}(X_{\{1,2\}}) \approx \operatorname{col}(X_{\{3,4\}})$.
- For the complex structure \clubsuit , $\operatorname{col}(X_{\{1,2\}}) \approx \operatorname{col}(X_{\{1,3\}}) \approx \operatorname{col}(X_{\{2,3\}})$.

False positive error and false negative error

Let S^* be the true set of features and $S \subseteq \{1, 2, \dots, p\}$ be an estimated set of features. Then

$$TP(\widehat{S}, S^{\star}) := trace\left(\mathcal{P}_{col(X_{\widehat{S}})}\mathcal{P}_{col(X_{S^{\star}})}\right),$$

$$FPE(\widehat{S}, S^{\star}) := |\widehat{S}| - TP(\widehat{S}, S^{\star}),$$

$$FNE(\widehat{S}, S^{\star}) := |S^{\star}| - TP(\widehat{S}, S^{\star}).$$

Subspace stability

- Apply a variable selection procedure (Lasso or ℓ_0 -regression) to B subsamples of size $\lfloor n/2 \rfloor$ to obtain sets $\{\widehat{S}^{(\ell)}\}_{\ell=1}^B$.
- Compute the average matrix

$$\mathcal{P}_{ ext{avg}} := rac{1}{B} \sum_{\ell=1}^{B} \mathcal{P}_{ ext{col}(X_{\widehat{S}^{(\ell)}})}.$$

Stability of a set S

Given the average matrix \mathcal{P}_{avg} , the stability of S is

$$\pi(S) := \sigma_{|S|}(\mathcal{P}_{\operatorname{col}(X_S)}\mathcal{P}_{\operatorname{avg}}\mathcal{P}_{\operatorname{col}(X_S)}) \in [0, 1],$$

A larger $\pi(S)$ indicates a more stable S.

We propose a Feature Subspace Stability Selection (FSSS) algorithm that returns stable model with a guaranteed $\pi(S)$.

FSSS algorithm

- Input: Matrix \mathcal{P}_{avg} , and stability threshold $\alpha \in (1/2, 1)$
- Sequentially add variables:
- Start from the null model \varnothing
- Add X_i to the current model S if $\pi(S \cup \{j\}) \geq \alpha$
- Stop until no new features can be added
- ullet Output: one selection set \widehat{S}
- Any output \widehat{S} is at least α -stable: $\pi(\widehat{S}) \geq \alpha$.
- Each run may give different selection sets:
- For the toy example \spadesuit , both $\{1,2\}$ and $\{3,4\}$ can be returned.
- For the complex example \clubsuit , $\{1,2\}$, $\{1,3\}$, $\{2,3\}$ can be returned.
- No redundant features can be selected:
- For the toy example •,
- $\pi(\{1,2,3\}) \approx \pi(\{1,2,4\}) \approx \pi(\{1,3,4\}) \approx \pi(\{2,3,4\}) \approx 0.$
- For the complex example \clubsuit , $\pi(\{1,2,3\}) \approx 0$.
- False positive error can be controlled:

Theorem: Under mild conditions, for any \widehat{S} returned by FSSS,

$$\mathbb{E}\left[\mathrm{FPE}(\widehat{S}, S^{\star})\right] \leq \frac{p(\gamma + b)^2}{2\alpha - 1} + a.$$

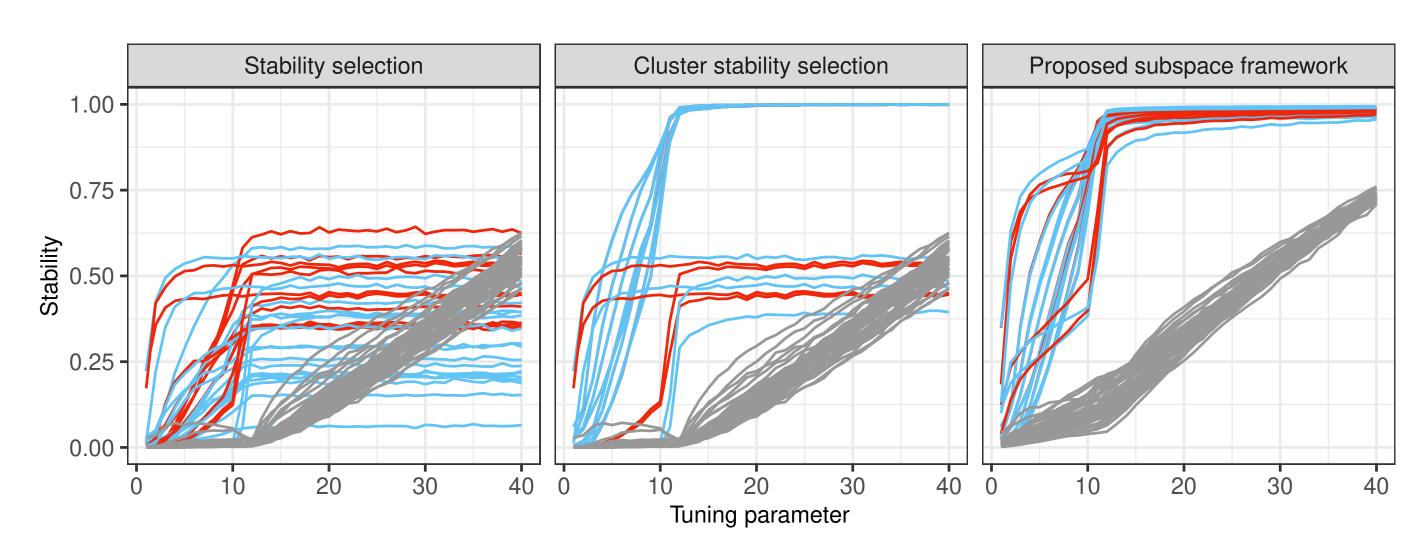
- The term γ is a quality term of the base procedure, with $\gamma \approx s_0/p$.
- The terms a and b are slackness terms that vanishes when features are perfectly orthogonal (a scenario reducing back to stability selection)

Subspace substitutability

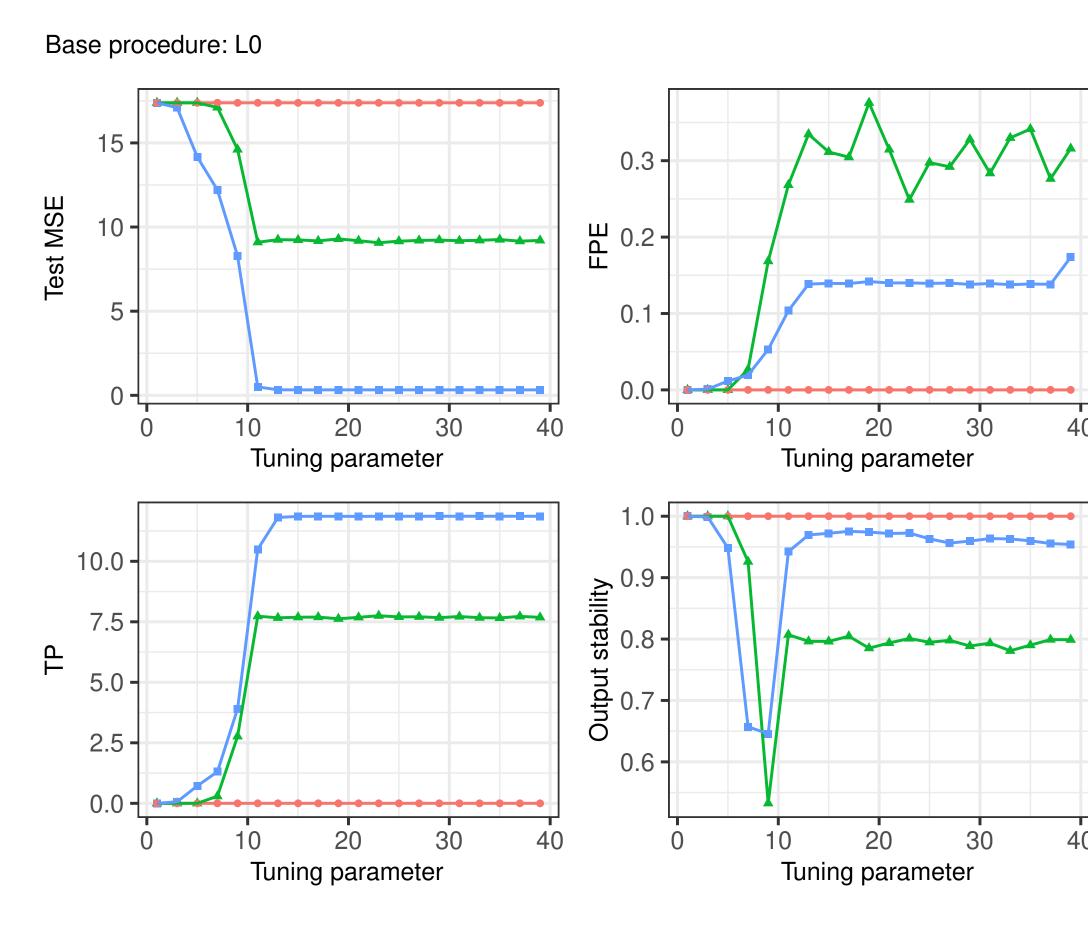
- A substitutability metric based on subspace:
- $\tau(\bar{S}, \tilde{S}) := \frac{\min\{\|\mathcal{P}_{\bar{S}}(y)\|_{2}, \|\mathcal{P}_{\tilde{S}}(y)\|_{2}\}}{\max\{\|\mathcal{P}_{\bar{S}}(y)\|_{2}, \|\mathcal{P}_{\tilde{S}}(y)\|_{2}\}} \cdot |\operatorname{Corr}(\mathcal{P}_{\bar{S}}(y), \mathcal{P}_{\tilde{S}}(y))| \in [0, 1].$
- Two more metrics $\nabla \tau(\bar{S}, \tilde{S})$ and $\Delta \tau(\bar{S}, \tilde{S})$ that examines the interesting level of substitutes (\bar{S}, \tilde{S}) .
- One algorithm that searches for substitutes among all stable models.

Experiments

- A synthetic dataset including both pairwise correlation and complex structure •.
- Base procedure: ℓ_0 -penalized regression.



Variable — Signal — Correlated signal — Noise



Method → SS → CSS (sps) → FSS